

Understanding processes through intelligent sensor gearboxes

Low backlash planetary gearboxes and intelligent sensor technology

Gearboxes are the components most capable of registering the relevant parameters for your application because they are **directly involved in the process**. alpha IQ **optimises** all applications where **torques and shear forces are critical process parameters**.

alpha IQ - measured parameters

Temperature

X direction

Identifying procedures, optimising processes, responding to changes

Intelligence in the gearbox

Monitoring, measuring and **optimising** the process and control quality are the most important requirements in sensor applications. Different sensors can be combined with the overall system, depending on these requirements and the depth of knowledge about the application. All mechanical loads are processed by the gearbox: torques, shear forces, speed, thermal loads, wear and backlash.

Close involvement in the process

Sensor gearboxes allow you to **measure, diagnose** and **assess** process parameters directly, i.e. process control, process optimisation and adaptive control. The sensor signals enable realtime monitoring, the investigation of unexpected failures (crashes) and the provision of basic information for predicting failures and calculating the remaining service life of the device.

Cost savings due to precision design

The memory function documents the actual load spectrum in order that the workload of the drivetrain can be measured and the design adapted accordingly.

A precision design allows the omission of certain securities and saves costs.

Really get to know your process!

The measured parameters are read out by sensors integrated at close proximity to the application and then used for the following application areas.

Interface to the system

Recording measured parameters, transmission, electronics box processing, response of the control.

Multiple benefits for your processes

Reduction of downtimes, overload detection, damage prevention, exclusion of conventional measuring technology and additional components, diagnosis for maintenance/replacement.

Space-saving solutions

A compact installation resulting from many years of experience working with planetary gearboxes and innovative sensor engineering.

alpha IQ – more installation and application examples

Valve control

Series installation for process control

An automatic open and close process is used to reliably detect the current status (open, closed or blocked) of redundant monitored valves in nuclear power stations. An analogue output signal was selected as an electronic interface for integration in the system control.

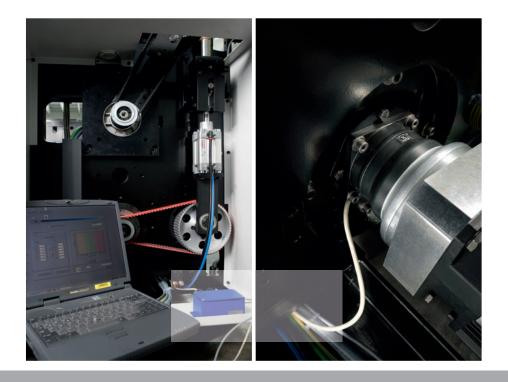
Monitored measured parameters include torque and temperature.

Diagnosis:

The forces generated in the application are measured.

The sensors make precise measurements during the process so that you can determine whether a sensor, motor or gearbox is suitable for the task or whether it could be replaced with a smaller, less expensive model. Test results can be transferred to any machine of the same model to avoid superfluous securities – optimisation of the drivetrain design.

Process monitoring:


The actual situation is measured. The sensors enable you to visualise and understand each individual step of your process.

Process control:

Actual values that influence the process directly are measured. The values measured by the sensors can be used directly for the control and readjustment.

alpha IQ – Application example

The sensor gearbox with toothed belt and lever mechanism

LEMO Maschinenbau GmbH from Niederkassel-Mondorf is a globally operating market leader in the manufacture of film sealing machines. LEMO designs and manufactures systems for processing films for carrier bags, hygiene/sanitary bags, food, waste disposal and much more.

The **sensor gearbox** with toothed belt and lever mechanism moves the sealing bar in the systems. The sensor gearbox **analyses** the sealing process to optimise the **closing process and time**. The torque and the radial forces are measured in x and y direction.

Automation Mechanical debugger

Process-critical parameters produced during movement sequences involving several levers are recorded and used to adapt the design of the drivetrain in the most efficient way possible. Furthermore, the identification of existing securities for streamlining the machine represents another economical aspect that reduces costs.

Packing machine Series installation for process control

The forces and torques generated in the application toggle lever press, the most powerful of which occur at the dead centre position of the toggle lever, cannot be determined by calculation or motor current measurements. Integrated sensors are used to monitor the forces occurring in the process: **Quality control:** product is checked prior to packing **Quantity control:** production quantities are monitored **Process monitoring:** Upstream processes are monitored (capacity)

TP⁺ – the heart and soul of alpha

Maximum power density

And the torques? Although the previous TP produced outstanding results, we managed to increase the torques by up to 40%

If your application requires high torques, the only solution is the TP⁺ HIGH TORQUE[®], which is capable of transferring up to 100% more torque within the same installation space. Raising the limits – typical of alpha gearboxes.

Versatile installation

In whatever position you install your TP⁺, the gearbox always contains the same quantity of oil. TP⁺ is so flexible, you can install it vertically, horizontally or with the output facing upwards or downwards.

Quick gearbox selection

Size			004	010		025		050	
			MF+	MF ⁺	MA⁺	MF+	MA⁺	MF+	MA+
Max. acceleration torque	T _{2B}	Nm	32-50	80-130	230	250-380	480-530	500-750	950
Nominal output torque	T _{2N}	Nm	15-40	35-90	110-180	100-220	260-375	220-400	575-675
EMERGENCY STOP torque	T _{2Emer}	Nm	100	250	525	625	1200	1250	2375
Max. output speed	n _{1max}	min ⁻¹	6000	6000	6000	4500-6000	6000	4000-5000	5000
Permitted average output speed	n _{1N}	min ⁻¹	3300-5500	2600-4500	4000-4500	2300-4200	3500-4000	1900-3900	3000-3500

Size			11	0	30	00	500	
Size		MF+	MA+	MF	MA	MF	MA	
Max. acceleration torque	T _{2B}	Nm	1300-1600	2000-3100	2800-3500	5300	4800-6000	10000
Nominal output torque	T _{2N}	Nm	700-1250	1400-1750	1600-2200	3100	2900-3700	6000
EMERGENCY STOP torque	T _{2Not}	Nm	2750	6500	8750	13250	15000	25000
Max. output speed	n _{1Max}	min ⁻¹	3500-4000	4500	3000	3000	3000	3000
Permitted average output speed	n _{1N}	min ⁻¹	1400-3400	2500-3000	1600-2200	1500	1300-1800	1500

MF = Standard

MA = High Torque

Superior running thanks to the helical teeth

TP⁺ "whispers". Compared to the classic straight-toothed TP, the helical-toothed TP⁺ is 6 dB(A) quieter during operation. And what a difference to added value 64 instead of 70 decibels makes. You will hardly notice vibration made by the TP⁺ because it runs so smoothly.

Maximum positioning accuracy

TP used to represent compact precision. However now, the TP⁺ represents maximum compact precision because we have managed to further reduce the torsional play, compared with the TP, to less than one angular minute to enable you to significantly increase the positioning accuracy in your application.

The extra-rigid TP⁺ HIGH TORQUE[®] achieves the best results because torsional rigidity also has an influence on the positioning accuracy. This torsional rigidity of this model exceeds the values of the TP⁺ by up to 110%.

TP⁺ IQ 010

			Max. permitted load	Measurement range MB
Max. acceleration torque ^{a)} (max. 1000 cycles per hour)	Т _{2В}	Nm	T _{2B}	Т _{2В} (mind. 90)
EMERGENCY STOP torque ^{b)} (permitted 1000 times during the service life of the gearbox)	T _{2Not}	Nm	200	X ^{d)}
Max. radial force ^{b)} (with x2 = 0 and z2 = 82.7 mm)	F _{2RMax}	Ν	1580	1580
Max. axial force ^{b)}	F _{2AMax}	Ν	-	X ^{d)}
Max. permitted housing temperature		°C	+90	+90
Tilting rigidity ^{b)}	C _{2K} Nm/	/arcmin	-	-
Torsional rigidity ^{b)}	C _{t12} Nm/	/arcmin	-	_

TP⁺ IQ 025

			Max. permitted load	Measurement range MB
Max. acceleration torque ^{a)} (max. 1000 cycles per hour)	T _{2B}	Nm	T _{2B}	Т ₂₈ (mind. 300)
EMERGENCY STOP torque ^{b)} (permitted 1000 times during the service life of the gearbox)	T _{2Not}	Nm	625	X ^{d)}
Max. radial force ^{b)} (with $x^2 = 0$ and $z^2 = 94.5$ mm)	F _{2RMax}	Ν	4370	4370
Max. axial force b)	F _{2AMax}	Ν	-	X ^{d)}
Max. permitted housing temperature		°C	+90	+90
Tilting rigidity ^{b)}	C _{2K} Nm/	/arcmin	-	-
Torsional rigidity ^{b)}	C _{t12} Nm/	/arcmin	-	-

TP+ IQ 050

			Max. permitted load	Measurement range MB
Max. acceleration torque ^{a)} (max. 1000 cycles per hour)	T _{2B}	Nm	Т _{2В}	T _{2B} (mind. 500)
EMERGENCY STOP torque ^{b)} (permitted 1000 times during the service life of the gearbox)	T _{2Not}	Nm	800	X ^{d)}
Max. radial force ^{b)} (with x2 = 0 and z2 = 81.2 mm)	F _{2RMax}	N	7500	7500
Max. axial force ^{b)}	F _{2AMax}	N	-	X ^{d)}
Max. permitted housing temperature		°C	+90	+90
Tilting rigidity ^{b)}	C _{2K} Nm/	arcmin	-	-
Torsional rigidity ^{b)}	C _{t12} Nm/	/arcmin	-	-

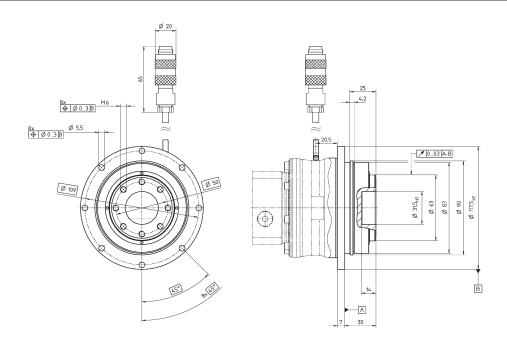
^{a)} depending on the gearbox ratio

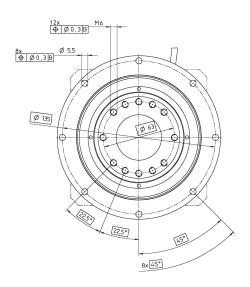
^{b)} the value may be less than with standard gearboxes

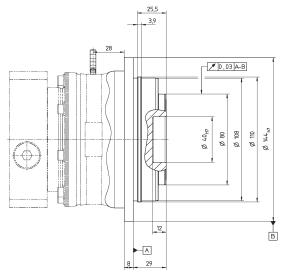
d) no measurement range available

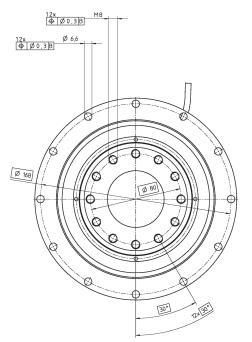
TP⁺ IQ – Integrated sensors

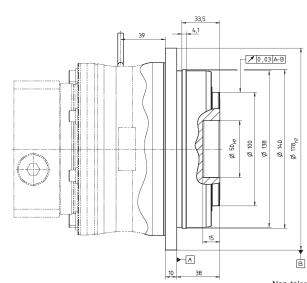
Sensors integrated in the gearbox housing to measure the application values at the output for gearbox sizes TP⁺ 010, 025, 050.




Please refer to the "TP⁺ Built for precision" brochure or the main catalogue for specific TP⁺ gearbox data (not sensor-dependent).


Measuring accuracy $\pm 2\%$ (percentage of the measurement range) Resolution 0.5% (percentage of the measurement range) Temperature accuracy $\pm 2K$ If the radial force is 1/5 of the max. tilting torque, the torque signal deviates by about 1%.


Please contact alpha for information on other gearbox types and sizes as well as measurement ranges.



Non-tolerated dimensions $\pm 1 \text{ mm}$

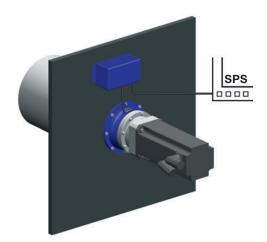
Technical data

Electronics box

Internal communication Supply voltage Data interface

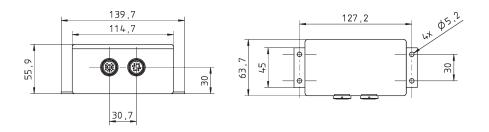
The electronics box must be installed in the direct vicinity of the gearbox, as the cable is only 600 mm long.

Cable configurations


alpha IQ - Electronics box plug assignment

	Electronics box		ission to	
Pin	Name	Description	Colour ¹⁾	
A	VCC_IN	Supply voltage 24V	White	OL AO
В	DGND	Supply voltage GND	Brown	
С	RS232Tx_1	Serial interface, transmit	Green	
D	RS232Rx_1	Serial interface, receive	Yellow	• • • • • • • • •
E	DGND	Serial interface, GND	Grey	-
F	DGND GND		Pink	-
G	N/C			
Н	N/C			-
I	N/C			-
К	DGND GND		Blue	
L	N/C			-
М	Ext_3	Analogue3 output - torque	Black	1
N	DGNDExt_3	Analogue3 output GND – torque	Purple	1
0	DGNDExt_1	Analogue1 output GND – radial force x	Grey/Pink	1
Р	Ext_1	Analogue1 output – radial force x	Red/Blue	1
R	Ext_2	Analogue2 output - radial force y	White/Green	1
S	DGNDExt_2	Analogue2 output GND – radial force y	Brown/Green	1
Т	N/C			¹⁾ Colour code for the connecting cable:
U	N/C			AC 10015474 AC 10015858

Interfaces

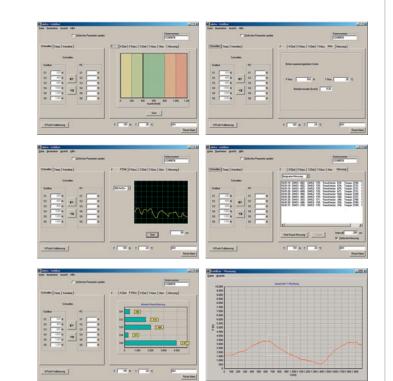

RS232 Voltage interface 0...10 V Current interface 0...20 mA Field bus via gateway

System overview

The illustration shows an example of the structure for a complete system: motor, gearbox, machine bed, electronics box and application. The electronics box registers, processes and transmits the sensor data to a PC/laptop, display, PLC, etc.

alpha IQ - Software

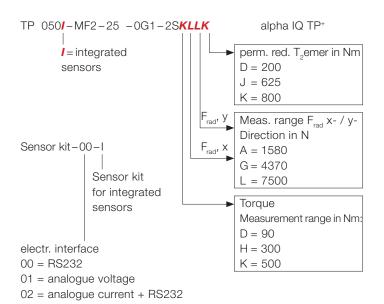
Display data


Maximum values Statistics Operating hours Characteristic curve parameters Thresholds Serial numbers

Display functions

Measuring function with graphic display Oscilloscope function Triggered measured value acquisition Maximum values Histogram function Defining parameters for gearbox characteristics Output of actual parameters Gearbox report (html) for recording current torques

Export of measured data


The export data is based on ASCII format defined by Microsoft Office Software or cymex[®] calculation software for WITTENSTEIN AG drives.

Order codes

Sensor gearbox = low backlash planetary gearbox + sensor kit Sensor gearbox $TP^+ IQ$ = low backlash planetary gearbox incl. sensor element, cable and socket + sensor kit (electronics box)

Sensor gearbox – order code TP⁺ IQ

www.alphagetriebe.de alpha getriebeba